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Helicoidal tracks

J. Alcaraz

Abstract

Many formulaeand utilitiesrelated to the description of ahelix are presented. ThelL3
convention is assumed.



1 Introduction

The primary aim of these preliminary notes was to keep a confident traceback of all formulae used
for the L3 SMD alignment. After few iterations they became a private consulting guide with some
optimized tricks. At present, | hope that it will be useful for awider audience.

You will find several figures across the text, but it consists mainly of algebraic games, based on
few robust formulae. | realized that it is the right way, due to the presence of ambiguitiesin the sign
of variables and in angle definitions. A geometrical view of the problem does not givein genera the
optimal answer and it is useful only “a posteriori”.

Finally, these notes are not intended to be the “solution of everything” (some of the utilities are
already present in the L3 software code), but a help for stand alone users like me, who spend hours
and hours solving an infinite number of times the same problem, always getting different answers and
never finding the best one.

2 Parametrization

A helicoidal track shows up whenever a charged particle is affected by a constant magnetic field.
We will assume that this magnetic field goes along the positive Z axis of our reference system. The
trajectory will be acircumferencein the XY plane and the Z displacement will be proportiona to the
length of arcthat isdescribedin XY. Wewill talk about a“ straight linein the SZ plane’, where Smeans
the variable associated to the previous arc length.

Given avector (py, py, p;) we will adopt the following decomposition in spherical coordinates:

px = pcose sné (1)
py = psn@sné (2
p. = pcosé ©)

where @ is the azimuthal angle and 6 the polar one. We will always consider that angles are givenin
the ranges:

o O [-mm (4)
6 0 [0, (5

21 XY plane

Inthe XY planethe movement is defined by areference point, (X, y;), and 3 parameters (C, @, 9):

» C: thecurvature of thetrack. The curvatureis positiveif the particle has a positive charge and
negative if the charge is negative. Since the magnetic field points to Z>0, positive (negative)
curvature means (anti)clock-wise rotation in the XY plane.

* @: the azimuthal angle of the momentum at the position of closest approach to the reference
point.
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(X0 Yo)

(Xc, e )

Figure 1: Following our convention, the projection of ahelix inthe XY planeisacircumference. The
relevant parameters are shown in the figure.



(0,0) (0,z)

Figure 2: Following our convention, the projection of a helix in the SZ planeis astraight line: z =
7y + stanA. The relevant parameters are shown in the figure. The variable s at a point (x,y, 2) isthe
arc length in the XY plane from (xo, yo) to (X,y). Thisalso impliesthat s= 0 when z = z,.



« O: thedistance of closest approach to the reference point. This parameter is signed, with acon-
vention such that the coordinates of closest approach (Xo, Yo) are given by:

Xo—% = -dsing (6)

Yo—Yyr = +ocosg (7)
O

O = —(X%—X)sSn@+ (Yo~ Yr)CoS® 8)

If we define @ in ageneral way, as the azimuthal angle of the momentum vector at a point (X, Y, 2),
the following relation is satisfied:

X+Rsing 9)
y—Rcos@ (10)

Xc
Ye

where R = 1/C and (., Y¢) are the signed radius and the center of the circumference, respectively. In
genera, any two points (X, Y), (X, y') on the track satisfy:

Xx+Rsng
y—Rcosg

X +Rsing (11)
y —Rcos¢ (12)

The circumference can be mathematically described in a single equation as follows:

(X=X)* + (Y- Yo’ =R (13)

where the center can be determined from the parameters at (Xo, Yo) and formulae (9-10):

X +(R-9)sng (14
yr —(R-90)cosq (15)

Xc
Ye

2.2 SZ plane

A crucia point in the L3 convention isthat no use is made of z;, the Z component of the reference
point V. Every Z coordinate is referred to z=0. The straight line in the SZ plane is described by 2
parameters (tan A, z):

» tanA: thedopeinthe SZ plane, dz/ds. It isaconstant for agiventrack and it isdirectly related
with the polar angle of the momentum vector, 6:

tanA = —2 (16)
VPE RS
tanf = 1 (17)
T tan)

DHowever, z isincluded in the fit with a sizesble weight (20 mm error, actually) due to the low quality of L3 Z mea-
surements. The sameistrueinthe XY plane, but with anegligibleeffect (we expect at least 100um precision at the vertex,
which is much less than 20 mm).



* Zo: the Z position when the particleis at the distance of closest approach in the XY plane.

The equation of the trgjectory in this planeis very smple:

z = Zy+stanA (18)

where sisthe arc length when the particle travelsfrom (X, Yo) to (X, y). Thearc lengthisusually pos-
itive, but it can be negativeif (x,y) is“before” (Xo, Yo) asthe particle travelsin time.

2.3 Practical answersto usual problems

* Howtofind the @ angleat a given (X,y) point?
The following relations are satisfied at (X, y):

X+Rsng = x+Rsn@ (29)
y—Rcosg = yp—Rcosq (20)

Then, @ isgiven by:
¢ = atan2(sing - C (X = Xo),cos¢ + C (Y — Yo)) (21)

whereatan2(y, x) isthe FORTRAN function that findstheright angleinthe XY planefor agiven
vector (X,Y). If we do not want to use C, let us define:

@ = atan2(y-Yo,X - Xo) (22)

Substituting this new definition in (19-20) gives:

cos(¢p-@) = cos(g— @) (23)
0

@ = proxim2 @ - @,0.) (24)

where proxim(¢, &) isafunction that bringsthe angle @ into the (-t + &, m+ &) range. Its defi-
nition is exactly the following [1] :

proxim(g, &) = g+ 2nnint(€2;nq) (25)

where nint(x) is the closest integer to the real number x.

Both formulae (21 and 24) give agood answer inthe C — 0 limit.
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* How tofind thevalue of the curvature C from (X, Yo) , (X,¥) and ¢ ?
Eliminating ¢ from expressions (19-20) we arriveto:

2(X = Xo) Sin ¢ — 2(y — Yo) COS @y

C = 26
(X =X0)? + (¥ ~ Yo)? (26)
» How tofind thearclength from (Xo,Yo) to (X,Yy) ?
The exact answer is given by:
Ag
= — 27
S C 27

where A is ¢ — @, the arc described in the XY plane when we go from (Xo, Yo, 2o) to (X, Y, 2).
There is a 2rr ambiguity in A as determined from XY information only. This fact is always
unrelevant, except for s. To avoid thiskind of ambiguitieswe will restrict ourselvesto solutions
such that:

Ap O (-mm) (28)
In this range equation (27) reads:
s = [IOXIm(gé)—(p, 0) (29)

However, this expression is not well behaved inthe C — 0 limit. The values of Ag and C can
be really very small and the ratio will run into alack of accuracy. There are other alternatives.
From (19-20) we get:

a=sin(Ag) = —C(x—Xo)cos@ —C(y—Yo) SN (30)

B=cos(Ap) = 1-C(Xx—X)sing +C(y-Yo)cos (31)
O

s = atanz(C—a, B) 32

which only makes use of the curvature. Finally, we can get a very interesting expression substi-
tuting C = —Ag/s in (30):

_ (X=x0)cos@ +(y—Yo) SN
5= snc(Ag) (33)

with sinc(x) = (sinx)/x. Thisformulaisaso well suited for theC — 0 limit:

S = (X—=Xp)cos@ +(y—Yo)Sng (34)
7



* How tofind the(x,y) point if we know thearclegnth ?

To avoid accuracy problems we should use the curvature C in a clever way. Using formulae
(30-31) and Ap = -Cswe get:

X = x0+ssinc<%s> cos(w—%) (35)
y = y0+ssinc(%s> sin (@—%) (36)

3 Commentson L 3fitting
Given the fact that XY and Z measurements are almost decoupled 2, one can split the helix problem

into two different ones: afit to acircumferencein XY plus afit to astraight linein SZ.
The circumference fit is performed using the linear approach of reference[2] ¥:

(A : C 2 2
% = O+ (X—X)sing (Y~ Yr) cCOS@ — 2(1-Cd) ((Xk_xr) + (Y= W) ) (37)
where (x4, Yk) are the coordinates of the kth point and J; isits distance to the circumference. The x? to
be minimizedis:
X2 = > we gl (38)
k
where wy is the weight of the kth point. There exists an exact solution for the minimum of the x2 in

the variables 8, ¢, C/(1 - Cd) ¥
The straight linefit in the SZ plane is performed considering uncertainties only in Z coordinates:

X = 2w (3-n-stanA)’ (39)
j
wherez istheZ coordinateof thejth point and s; isitsarc length derived fromthe previous XY circum-

ferencefit. Neglecting the error on sisreasonable if As < A;, which seemsto be the case in absence
of microvertex information.

4 Change of reference point

How do track parameters change when the reference point moves fromitsinitial vaue (x;, Y, z)
toanew one(x,Y,,z)? Thisis aquestion to be answered here. We will aso determine how does the

AThereisalittlecorrelation inthe case of the SMD dueto the2° tilt of the outer layer, but it may beneglected to simplify
the problem.

SWe will derive thisformulain section 4.

Thisisonly trueif theweightswy do not depend on &, @ or C/(1-Cd). Thisfact has not been taken into account in[2].
For instance, in the case of L3 the uncertainty goes along the azimuthal direction, and neglecting the dependence of the
weights on the fitted parameters introduces an error of order Cs, and not Cd. That gives alittle bias for low momentum
tracks.



covariance matrix change and some useful approximationsto the problem. We do not do that for fun.
There are obvious applications like, for instance, when the crossing point between the track and any
given object has been found. Defining thiscrossing point asthe new reference point gives accessto al
track parameters and errors there through the expressions of this section ®. In thisway we only need
to make this delicate game once.

4.1 New parameters
The new parameters, 0’ and ¢, should satisfy:

x+(R-9)sng = x+(R-9)sng (40)
y,—(R-9)cos¢y, = y,—(R-9)cosm (41)
or, in amore convenient form:
R_6/ . _ . _ AX
R_ésm(;{fJ = dngp- o5 (42)
— B Ay
R_acos% = cosqb+R_5 (43)

where Ay =x — X and Ay =y, -y,
Due to the fact that in all practical cases sign(R - d) = sign(R - d’), ¢, can be determined as fol-
lows, whithout any ambiguity:

_ . 3 JAW AW
gqg—atanZ(sm(R) —R_6,COS(R)+R_6) (44)

The value for &' must be extracted by eliminating ¢, from expressions (42), (43):

(R-05)% = (R-08)* - 20 (R-3)sing + 2, (R— 3) cos @ + A + A2 (45)

and applying the same assumption as before (sign(R - ) = sign(R - &%)):

o —20csingy + 20 cosq@ | AZ+ A7

R-&'=(R 6)Jl+ R=3 *R=0)2 (46)
U

R —2AcSingy + 20 cosqy | AF + A7

5 =R-(R 6)Jl+ s * Ro5Y (47)

Provided that ¢, is aready known there isamore convenient expression with agood behaviour in
theC - Olimit:

9You simply have to determine ¢, and impose &’ = 0in any formulaof the section.

9



(X, Y,.) °-~~-..§~ V@, 1/ C

(X0 Yo)

XoV.)

Figure 3: Change of parametersin XY when the reference point moves from (x;, y;) to (X, y.).
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o = 5+AxSin(R)—AyCOS(R)+(AXCOS(R)'*'AySin(R))tan(L;%) (48)

The point of minimum approach to (x;,y;) is:

X = X -0sndg (49)

Yo = VY, +0' cosd (50)
and the corresponding Z coordinate is:

Z, = p+tstanA (51)

where s can be determined from the expressions in section 2.3.

4.2 Approximate solutionsfor &'

Formula (45) can be very well approximated in the limit in which 8’ < R (that is, when the new
reference point isvery close to the track):

2 n+ay
5/:5_%+(Ax8in¢b—ﬂy005(lb) (1-Co)-C X2Ay 2

where the neglected term on the right hand side is Cd'%/2. This expression is even more useful when
one realizes that equation (47) leads to computer problemsinthe C — 0O limit whereas this one does
not. Moreover, if we divide both sides of the previous equation by (1 — C3) and we neglect C2 and
Cdd' terms:

6’=6+Axsin(p)—Aycos%—2(?CC6) (A2 +12) (53)

whichisavery useful and smple expression. This approximationisthe basis of the track reconstruc-
tion method (see section 3) in L3.

4.3 New (C, @, d) covariance matrix

The new covariance matrix is built as follows (in alinear approximation):

V' =JVvJ’ (54)

where J isthe jacobian matrix, JT isitstranspose, V isthe original covariance matrix and V' isthe
new one. The most economic way to find the relevant derivatives of the transformation isto differen-
tiate expressions (40), (41):
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N

o

K

95

op

00’

00’

95
R sm%—

-R? cosq¢) —

00’

!

0C

sin%+g—$ cos¢h (R-9) = HR-0) cosq

o

cos%—% sng (R-90) = —(R-9) sn@

sin(Rg+a—¢(J cos@y(R-9) = —-sn@

cos%— % sng,(R-90) = —cos@

sn%+—¢é cosg, (R-0) = -R sng

6 cos%— ot sm(RfJ(R &) = -R cosq

Now it iseasy to isolate all derivatives:

which isavery useful compressed form.

oC
aC
oC
o
oC
35
O
aC
o
o
o
95
95
ac
95
o
95
95

=0
_ Rsn(g - @)
R- 0
(R-9) cos(¢f — @)
R- 0

sn(¢ - @)
R- 0

= R (cos(¢— @) - 1)

= —(R-9) sn(¢g -

= cos(¢h— @)

(55)
(56)
(57)
(58)
(59)

(60)

(61)
(62)
(63)
(64)
(65)
(66)
(67)
(68)

(69)

However, for computational needs is better to work without

high values of R (that is, we want well behaved expressionsin the straight line limit). Making use of
®) and sin(¢, — @):

Ay, Ay to replace cos(q, —

sn(¢@ -
cos(¢, — @)

1-Co&
1-

Co

(Axcos @ + Ay singy)
C

+
1-Co
1+

O

-Cd)

2(1

1-Co (Axsin g + Ay cos )

CZ

12

(0" - (Ox + dSing)® — (A — 5 cos @)?)

(70)

(71)



oC
o0C
oC
o
oC
00
ogb
ac
o
o
o
F
00’
ac
00’
w
00’
%

N .
T 21-co)

1 .
_m (AX COS (b +Ay In (R))

1-C3) , C¥(1-Co)
1-co') T 20-Co)?
2

(1-Cd)2
__r
21-C3)
1-Co .
m (AXCOS(R) +Ay sn (R))
CZ

(6" - (Ox + 0 Sing)® — (A — 5 cos @)?)

(Axcosgy + Ay singy)

(0" = (Ox + O Sin@)? — (Ay — 5 cos @)?)

(02— (Ax+ dSin @) — (Ay — d cos@)?)

and in the straight track limit:

oC'
oC
oC'
o
oc
o5 - °
Z—(’é = —(Axcos@ +Aysing)
o _

% 1

0% _

35 0

o'
oC
a0’
o
o'
176)

= :_2L (02— (A + dSin @) — (A — d cos@)?d)
= (Accos@ +AysSng)

=1

4.4 New SZ covariancematrix

All derivatives arein this case much smpler:
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(72)
(73
(74)
(75)
(76)
(77)
(78)
(79)

(80)

(81)
(82)
(83)
(84)
(85)
(86)
(87)
(88)

(89)



dtanA’

JdtanA =1 (90)

dtanA’
= 91
- =0 (91)

07

= 92
JdtanA S (92)

07
0 -1 93
32 (93)

which gives the covariance matrix:
Vtan/\tan/\ SVtan/\tan/\ +Vtan/\ 20
V. = (94)
SVtan/\tan/\ +Vtan/\ 20 szvtan/\tan/\ +25Vtan/\ 20+V2020

5 Track crossingacylinder parallel toZ

The crossing point (xg, Yo, %) is defined by the conditions:

Xx+tRsng = X+Rsng (95)
Yo—Rcos¢, = yo—R cosg (96)
Z, = Zp+stanA (97)
PP = (%) + (Yo~ Vo) (98)

where (X,, Yp) is the center of the circumferenceto be crossed and p isitsradius. To solve the problem
we will use the following definitions:

@ = atan2(sing — C(X, = Xo),cos @ + C(Y, — Yo)) (99)
@ = atan2(y; - Yo, X~ Xp) (100)
y = 2e=X0) SN~ 2Yp ~ ¥o) COSR ~ Cp° ~ C((Xp ~ X0)° * (¥p = Yo)°) (100)
20,/(sin @ ~ C(%, — X0))? + (COs @ + C(¥p — ¥0))°
The solution can be derived from:
sn(@e-@) = vy (102)
(103)

which hasameaningif L] y [ 1 and givestwo possible angles ¢. (as expected). Thevaluesfor (X3, Y;)
are

Xo = X+ pcos@ (104)
Yo = YotpsSnag (105)

14



(X, yc.)

Figure4: Track crossing a circumferencein the XY plane.
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but usually we will be interested in a solution with positive arc length:

(X0 —%0) COS@ + (Yo~ Yo) SN@ >0 (106)

A particular caseisthat of acylinder with p? < RZ and (X0 —X)? + (Yo —Y,)? < p?, that is, acylinder
with its center very close to the distance of minimum approach. In this case thereisonly one solution
withs> 0:

®& = @ +acsn(y) (107)

6 Track crossingaplane

The crossing point (Xg, Yo, %) is defined by the following conditions:

Xy = x0+ssinc<%s> cos(m)—%s) (108)
Yo = y0+ssinc<%s> én(@—%) (109)
Z, = Z+stanA (110)
0 = (X%=X)W%+Mp—Yo)W+(—2%)V: (111)

where (X, Yp, Z) 1S @ given point on the plane and (vy, Vi, V;) is an unitary vector perpendicular to it.
To solve the problem we will define:

@ = atan2 (v, Vy) (112)
v = \/\m (113)
dy = (%p=%) Vxt+(Yp—Yo) W+ (% —2) V2 (114)

whered, isin fact the signed distance from (Xo, Yo, Z) to the plane. Then we can get an equation in the
variable s:

dy

s = (115)
v sinc ($) cos (S +@ - @) +V; tanA
The equation can be solved iteratively assuming the parameter Cs to be small:
dp

= 11

% V; cos(@, — @) +V, tanA (116)
dp

S = - 117
visine (52) cos (S0 + @~ @) +V, tan ) ()
= % (118)

visine (%) cos (S92 + @ - @) +V, tan )

16
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Figure5: Track crossing a plane.
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where one should check that [ Cs [k rrat every step. In the special case in which v, = 0 the equation
can be exactly solved in the variable Cs:

sSn(Cs+@-@) = sn(g-@)+Cd, (119)

which givestwo possi bl e sol utions (but we choose the onewith minimum arc length). Thefinal answer
for s comes from substitution of Csin expression (115) 9.

7 Including new pointsin atrack

Let us assume that the track goes through the point (Xrix, Yrix, Zfix) With some uncertainty. Let us
also assume that al we know from the track are its parameters and the covariance matrix. Even if so,
it isis possible to include that point in the fit assuming a linearized behaviour around the minimum.
This hypothesisisamost trueif the variation of the track parametersin the whole gameisvery small.
If thisis not true, even the transport of the covariance matrix has no meaning.

7.1 XY plane

The x2 in absence of new pointsis:

2

X = XS X (120)
xx = C-C° (121)
X2 = (RJ_(R()J (122)
X3 = &6-0° (123)

where a sum on repeated indices is assumed. S; is the inverse of the covariance matrix, Vj;, and C°,
¢p and 8° are the actual values of the track parameters (the obvious minimum of the x2isat C = C°,
®=a, 6=25.

Let us define a second set of parameters. For that, we will use (Xyix, Yrix, Zfix) s reference point, the
onewhich isgoing to beincluded in thefit. From section 4 we know how to extract the new azimuthal
angle and the new distance of closest approach from theinitial set of parameters:

Ax = Xfix_xr (124)
Ay = Yix—Y (125)
!
_ Y A,
o = aIanZ(sm(R) —R_6,COS(R)+R_6) (126)
2 2+ 2
o = 6—%+(Axsinqb—Aycos¢b) (1-Co)-C XZAV (127)

where we have neglected the term C 6'%/2, given the nature of the problem. We can also establish the

X? in this second reference system:

6)To gain acccuracy do not divide Csby C.
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X* = X% (128)
X, = C-Cc"=Cc-C° (129)
X = Gh-@ (130)
X, = & -8Y (131)

where §; istheinverse of Vj

ij» the covariance matrix after transport. In the linear approximation used:

0%
F = 1K (132)
Xi x| 5
ox| ox
Ve = —1 V 133
! an x=0 dX| x=0 ‘ ( )

where the derivatives can be found from equations (72) to (80) in section 4 by replacing:

oC - X, (134)
o - o, (135)
95 - O%, (136)
oC - ox (137)
ow — 0% (138)
5 - Oxs (139)

The new point should belong to the track. That meansthat &’ is zero within its uncertainty, o. In
the second reference system, the x? changes as follows:

5\ °
X2 = Xg X+ (E) (140)
Or 7\ 2
_ gg}.>q+(5 ;XS) (141)
which leads to the solution:
! 1 -
Vg = (skj + ggksgj?,) (142)
U
X = -V ren D (143)
- k3 o2

where g;; isthe identity matrix (1if i = j, O otherwise).
In the general case there will be severa pointsin the fit. We can not make things so easy because
the x2 must be established in only one system. Then, it is better to establish it in the original frame:
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N 6‘2 2
X = NSMHZ(—) (149)
k=1 \ Ok
’ 2
N[O + 5 Do %
- )Qs,jxﬁz( 7 0% (145)
k=1 Ok
for N points (¢, 8.), k = 1,N. Finding the minimum of this x? leads to:
N 1 ox. oX; °
Ve = (s.- +3° 5 5K 5k ) (146)
! J é GE axi x=0 dxl x=0
O
N Or !
L 4 aen
a1 Ok 9% |y

7.2 SZ plane

The problem is similar to the XY case, but dightly smpler. We will do everything in the initial
reference system:

0_5. \2
o= % Tix+ (xz +SX + B +astan)\ zf.x) (148)
X, = tanA —tanA® (149)
X2 = -4 (150)

where sisthe arc length described inthe XY plane and T; isthe inverse of W, the covariance matrix
inthe SZ plane. The solutioniis:

-1
Tu+S Tp+3
\MGW - 11 g2 12 a2 151

1] (T21+% T22+% (5)

28 +stan)\°—zfix

xe = —(W"s+Wi" o2 (152)
+stan A0 - z;
X; = —(WET" s+ WS % = i (153)
Finally, the most general solution for several pointsis:
N S N 1
W = T+ Ehzl o T+ thl % (154)
Tor+300 %& T2+ 7

20



N +5tan A% - zg
K= DLW g Dt ST A (155)

k=1 Ok
N +5ctanA® — zg

Xo = =D (Wo" s+ Was 2 S 7 il (156)
k=1 k

8 Constrainingatrack to a point

8.1 XY plane

A very particular case of the previous one happenswhen o - 0, that is, when we want to fix the
point to be on the track. That impliesthat &’ is zero. The x? should be written in a different way:

2

X = x§x+&d (157)

where ¢ isaLagrange multiplier needed to impose the 6’ = 0 constraint. The solution is:

0%,
% Vi 5|,

0x3 (29
0% |x=0 9% |x

(158)
Vkl

Another option isto go to the system in which the fixed point is the reference point. There, the x2
is again conceptualy smpler:

X2 = X G x+Ed (159)
(160)
with the solution:

C = C°- V}?’ 5Y (161)

V33

- o _ V/23 (3

V33

d =0 (163)

The same result would have been obtained if we simply solve equation (143) with &’ = 0and o = 0.
However, the covariance matrix in that limit is:

S, s,
R s o
T S s;szzosazsaz 0 (164

which must be used carefully (it isasingular matrix).
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8.2 SZ plane

The solutionis:

SWi1 + Wy o_

Zsix — Stan A (166)

tan A tanA° -

2

And the new covariance matrix (also singular) inthelimit o - Ois:

1 1 -s
ew
Vvi? B Ty — 28T + STy ( s & ) (167)

9 Common vertex for several tracksin XY

To find the common point of several tracks (at least 2) inthe XY plane we would like to minimize
for al tracks approximation (52):

Gid? . N+N
q/:d—%ﬂAxsn(m—Aycosm) 1-GCd)-G XZAV (168)
where &' isthe distance of closest approach of theith track to the desired reference point (x;,y;). The
ideaisthat A, and A, are the parameters to be determined, which are the difference between the old
reference point and the new one. The neglected term on theright hand sideis C; &'2/2 whichisexpected
to be very small. The x2is:

N 6/ 2

% =3 (2) (169
i=1 \ i

where g; isthe error on &'. The best way is to linearize the problem, by choosing the first reference

point (x;,y;) closeto thefinal one. If that is the case, C; (A2 + A§) terms may be neglected. Inthefirst

step we minimize the following x2:

_ 26-G&
g = @ 0-GH) 171
v o= _cos@i (1-Gig) (172)
i
!
N
X)%y = (o +Bi Dty Ay)2 (173)
i=1

with the solution:
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_ (=B =By
Vaay = (Eﬂw Eylz) (174)
Ax _ _Eaiﬁi
(5 = v 298 o

Theerror on each &' induced by linearizationis C; Ag;ﬁé . If wehave not enough accuracy the process

should be iterated redefining a; until we get the required precision:

26 _Ci6|2 -C A(2JX+A(2)y

i = 20, i 20, (176)
where Ao, and Ay, come from the previous iteration.
10 Common vertex for several tracksin space
The x? contribution in the SZ plane isthe following:
N (D25 — TN (Accos@y + D, Sna@))
X =Y ( T " Snegy) - d ) (177)
i=1 2

where s isthe arc length from a displacement given by (A, Ay) and o, isthe error on Az from the ith
track. Now Az is not the difference with respect to the z reference point, but with respect toz= 0. In
the formulaabove Cd' terms have been neglected. We have to minimize the global x2:

X2 = Xy + X (178)

Then the problem can be still linearized in an iterative process:

26 _Ci6|2 _Ci A(2JX+A(2)y

.= % 2 (179)
B = SN @i (;_Cid) (180)
v = _Cos @ S—Cid) (181)

_ COS @y tan A;

S sinc(Ciso) 0 (182)

. sin i tan )\i
L sinc(Cisoi) 04 (183)
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S(B+E) L(By+&n) -LE

Vo = | SBY+&EN) (W +nd) -T2 (184)
T -2 Tz
—2(aiBi +zig;)
Ay
Ay = VAxAyAz _E(ai Y+ 2o a_zl,) (185)
A,
PIE

where Aoy, Aoy and Sy are the results of the previous iteration and they are set to zero in the fist step.
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