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Helicoidal tracks
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Abstract

Many formulae and utilities related to the description of a helix are presented. The L3
convention is assumed.



1 Introduction

The primary aim of these preliminary notes was to keep a confident traceback of all formulae used
for the L3 SMD alignment. After few iterations they became a private consulting guide with some
optimized tricks. At present, I hope that it will be useful for a wider audience.

You will find several figures across the text, but it consists mainly of algebraic games, based on
few robust formulae. I realized that it is the right way, due to the presence of ambiguities in the sign
of variables and in angle definitions. A geometrical view of the problem does not give in general the
optimal answer and it is useful only “a posteriori”.

Finally, these notes are not intended to be the “solution of everything” (some of the utilities are
already present in the L3 software code), but a help for stand alone users like me, who spend hours
and hours solving an infinite number of times the same problem, always getting different answers and
never finding the best one.

2 Parametrization

A helicoidal track shows up whenever a charged particle is affected by a constant magnetic field.
We will assume that this magnetic field goes along the positive Z axis of our reference system. The
trajectory will be a circumference in the XY plane and the Z displacement will be proportional to the
length of arc that is described in XY. We will talk about a “straight line in the SZ plane”, where S means
the variable associated to the previous arc length.

Given a vector (px, py, pz) we will adopt the following decomposition in spherical coordinates:

px = p cos φ sin θ (1)

py = p sin φ sin θ (2)

pz = p cos θ (3)

where φ is the azimuthal angle and θ the polar one. We will always consider that angles are given in
the ranges:

φ ∈ [−π, π] (4)

θ ∈ [0, π] (5)

2.1 XY plane

In the XY plane the movement is defined by a reference point, (xr, yr), and 3 parameters (C, φ0, δ ):

• CCC: the curvature of the track. The curvature is positive if the particle has a positive charge and
negative if the charge is negative. Since the magnetic field points to Z>0, positive (negative)
curvature means (anti)clock-wise rotation in the XY plane.

• φ0φ0φ0: the azimuthal angle of the momentum at the position of closest approach to the reference
point.
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Figure 1: Following our convention, the projection of a helix in the XY plane is a circumference. The
relevant parameters are shown in the figure.
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Figure 2: Following our convention, the projection of a helix in the SZ plane is a straight line: z =
z0 + s tan λ . The relevant parameters are shown in the figure. The variable s at a point (x, y, z) is the
arc length in the XY plane from (x0, y0) to (x, y). This also implies that s = 0 when z = z0.
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• δδδ : the distance of closest approach to the reference point. This parameter is signed, with a con-
vention such that the coordinates of closest approach (x0, y0) are given by:

x0 − xr = −δ sin φ0 (6)

y0 − yr = +δ cos φ0 (7)

⇓
δ = −(x0 − xr) sin φ0 + (y0 − yr) cos φ0 (8)

If we define φ in a general way, as the azimuthal angle of the momentum vector at a point (x, y, z),
the following relation is satisfied:

xc = x + R sin φ (9)

yc = y − R cos φ (10)

where R = 1/C and (xc, yc) are the signed radius and the center of the circumference, respectively. In
general, any two points (x, y), (x

�
, y

�
) on the track satisfy:

x + R sin φ = x
�
+ R sin φ

�
(11)

y − R cos φ = y
�
− R cos φ

�
(12)

The circumference can be mathematically described in a single equation as follows:

(x − xc)
2 + (y − yc)

2 = R2 (13)

where the center can be determined from the parameters at (x0, y0) and formulae (9-10):

xc = xr + (R − δ) sin φ0 (14)

yc = yr − (R − δ) cos φ0 (15)

2.2 SZ plane

A crucial point in the L3 convention is that no use is made of zr, the Z component of the reference
point 1). Every Z coordinate is referred to z=0. The straight line in the SZ plane is described by 2
parameters (tan λ , z0):

• tan λtan λtan λ : the slope in the SZ plane, dz/ds. It is a constant for a given track and it is directly related
with the polar angle of the momentum vector, θ:

tan λ =
pz�

p2
x + p2

y

(16)

tan θ =
1

tan λ
(17)

1)However, zr is included in the fit with a sizeable weight (20 mm error, actually) due to the low quality of L3 Z mea-
surements. The same is true in the XY plane, but with a negligible effect (we expect at least 100µm precision at the vertex,
which is much less than 20 mm).
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• z0z0z0: the Z position when the particle is at the distance of closest approach in the XY plane.

The equation of the trajectory in this plane is very simple:

z = z0 + s tan λ (18)

where s is the arc length when the particle travels from (x0, y0) to (x, y). The arc length is usually pos-
itive, but it can be negative if (x, y) is “before” (x0, y0) as the particle travels in time.

2.3 Practical answers to usual problems

• How to find the φφφ angle at a given (x, y)(x, y)(x, y) point?

The following relations are satisfied at (x, y):

x + R sin φ = x0 + R sin φ0 (19)

y − R cos φ = y0 − R cos φ0 (20)

Then, φ is given by:

φ = atan2atan2atan2 � sin φ0 − C (x − x0), cos φ0 + C (y − y0) � (21)

where atan2atan2atan2(y, x) is the FORTRAN function that finds the right angle in the XY plane for a given
vector (x, y). If we do not want to use C, let us define:

φs = atan2atan2atan2 (y − y0, x − x0) (22)

Substituting this new definition in (19-20) gives:

cos(φ − φs) = cos(φ0 − φs) (23)

⇓
φ = proximproximproxim(2 φs − φ0, 0.) (24)

where proximproximproxim(φ, ξ) is a function that brings the angle φ into the (−π + ξ, π + ξ) range. Its defi-
nition is exactly the following [1] :

proximproximproxim(φ, ξ) = φ + 2π nintnintnint(
ξ − φ

2π
) (25)

where nintnintnint(x) is the closest integer to the real number x.

Both formulae (21 and 24) give a good answer in the C → 0 limit.
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• How to find the value of the curvature CCC from (x0, y0)(x0, y0)(x0, y0) , (x, y)(x, y)(x, y) and φ0φ0φ0 ?

Eliminating φ from expressions (19-20) we arrive to:

C =
2(x − x0) sin φ0 − 2(y − y0) cos φ0

(x − x0)2 + (y − y0)2 (26)

• How to find the arc length from (x0, y0)(x0, y0)(x0, y0) to (x, y)(x, y)(x, y) ?

The exact answer is given by:

s = −
∆φ
C

(27)

where ∆φ is φ − φ0, the arc described in the XY plane when we go from (x0, y0, z0) to (x, y, z).
There is a 2π ambiguity in ∆φ as determined from XY information only. This fact is always
unrelevant, except for s. To avoid this kind of ambiguities we will restrict ourselves to solutions
such that:

∆φ ∈ (−π, π) (28)

In this range equation (27) reads:

s =
proximproximproxim(φ0 − φ, 0.)

C
(29)

However, this expression is not well behaved in the C → 0 limit. The values of ∆φ and C can
be really very small and the ratio will run into a lack of accuracy. There are other alternatives.
From (19-20) we get:

α ≡ sin(∆φ) = −C(x − x0) cos φ0 − C(y − y0) sin φ0 (30)

β ≡ cos(∆φ) = 1 − C(x − x0) sin φ0 + C(y − y0) cos φ0 (31)

⇓

s =
atan2atan2atan2(−α, β)

C
(32)

which only makes use of the curvature. Finally, we can get a very interesting expression substi-
tuting C = −∆φ/s in (30):

s =
(x − x0) cos φ0 + (y − y0) sin φ0

sincsincsinc(∆φ)
(33)

with sincsincsinc(x) = (sin x)/x. This formula is also well suited for the C → 0 limit:

s = (x − x0) cos φ0 + (y − y0) sin φ0 (34)
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• How to find the (x, y) point if we know the arc legnth ?

To avoid accuracy problems we should use the curvature C in a clever way. Using formulae
(30-31) and ∆φ = −Cs we get:

x = x0 + s sincsincsinc � Cs
2 � cos � φ0 −

Cs
2 � (35)

y = y0 + s sincsincsinc � Cs
2 � sin � φ0 −

Cs
2 � (36)

3 Comments on L3 fitting

Given the fact that XY and Z measurements are almost decoupled 2), one can split the helix problem
into two different ones: a fit to a circumference in XY plus a fit to a straight line in SZ.

The circumference fit is performed using the linear approach of reference [2] 3):

δ
�
k = δ + (xk − xr) sin φ0 − (yk − yr) cos φ0 −

C
2(1 − Cδ) � (xk − xr)2 + (yk − yr)2 � (37)

where (xk, yk) are the coordinates of the kth point and δ
�
k is its distance to the circumference. The χ2 to

be minimized is:

χ2 = �
k

wk δ
� 2
k (38)

where wk is the weight of the kth point. There exists an exact solution for the minimum of the χ 2 in
the variables δ , φ , C/(1 − Cδ) 4)

The straight line fit in the SZ plane is performed considering uncertainties only in Z coordinates:

χ2 = �
j

wj (zj − z0 − sj tan λ)2 (39)

where zj is the Z coordinate of the jth point and sj is its arc length derived from the previous XY circum-
ference fit. Neglecting the error on s is reasonable if ∆s � ∆z, which seems to be the case in absence
of microvertex information.

4 Change of reference point

How do track parameters change when the reference point moves from its initial value (xr, yr, zr)
to a new one (x

�
r, y

�
r, z

�
r)? This is a question to be answered here. We will also determine how does the

2)There is a little correlation in the case of the SMD due to the 2 � tilt of the outer layer, but it may be neglected to simplify
the problem.

3)We will derive this formula in section 4.
4)This is only true if the weights wk do not depend on δ , φ or C/(1−Cδ). This fact has not been taken into account in [2].

For instance, in the case of L3 the uncertainty goes along the azimuthal direction, and neglecting the dependence of the
weights on the fitted parameters introduces an error of order Cs, and not Cδ . That gives a little bias for low momentum
tracks.
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covariance matrix change and some useful approximations to the problem. We do not do that for fun.
There are obvious applications like, for instance, when the crossing point between the track and any
given object has been found. Defining this crossing point as the new reference point gives access to all
track parameters and errors there through the expressions of this section 5). In this way we only need
to make this delicate game once.

4.1 New parameters

The new parameters, δ
�
and φ

�
0, should satisfy:

x
�
r + (R − δ

�
) sin φ

�
0 = xr + (R − δ) sin φ0 (40)

y
�
r − (R − δ

�
) cos φ

�
0 = yr − (R − δ) cos φ0 (41)

or, in a more convenient form:

R − δ
�

R − δ
sin φ

�
0 = sin φ0 −

∆x

R − δ
(42)

R − δ
�

R − δ
cos φ

�
0 = cos φ0 +

∆y

R − δ
(43)

where ∆x = x
�
r − xr and ∆y = y

�
r − yr

Due to the fact that in all practical cases sign(R − δ) = sign(R − δ
�
), φ

�
0 can be determined as fol-

lows, whithout any ambiguity:

φ
�
0 = atan2atan2atan2 � sin φ0 −

∆x

R − δ
, cos φ0 +

∆y

R − δ � (44)

The value for δ
�
must be extracted by eliminating φ

�
0 from expressions (42), (43):

� R − δ
� � 2 = (R − δ )2 − 2∆x (R − δ ) sin φ0 + 2∆y (R − δ ) cos φ0 + ∆2

x + ∆2
y (45)

and applying the same assumption as before (sign(R − δ) = sign(R − δ
�
)):

R − δ
�
= (R − δ) ���� 1 +

−2∆x sin φ0 + 2∆y cos φ0

R − δ
+

∆2
x + ∆2

y

(R − δ)2 (46)

⇓

δ
�
= R − (R − δ) ���� 1 +

−2∆x sin φ0 + 2∆y cos φ0

R − δ
+

∆2
x + ∆2

y

(R − δ)2 (47)

Provided that φ
�
0 is already known there is a more convenient expression with a good behaviour in

the C → 0 limit:
5)You simply have to determine φ �0 and impose δ � = 0 in any formula of the section.

9



rr

X

Y

(x  , y  )

(x  , y  )00

(x  , y  )00’ ’

(x  , y  )rr
’ ’

0φ

(x  , y  )

’
’

δ
1 / Cφ 0

cc

δ

Figure 3: Change of parameters in XY when the reference point moves from (xr, yr) to (x
�
r, y

�
r).

10



δ
�

= δ + ∆x sin φ0 − ∆y cos φ0 + (∆x cos φ0 + ∆y sin φ0) tan(
φ

�
0 − φ0

2
) (48)

The point of minimum approach to (x
�
r, y

�
r) is:

x
�
0 = x

�
r − δ

�
sin φ

�
0 (49)

y
�
0 = y

�
r + δ

�
cos φ

�
0 (50)

and the corresponding Z coordinate is:

z
�
0 = z0 + s tan λ (51)

where s can be determined from the expressions in section 2.3.

4.2 Approximate solutions for δ �δ �δ �

Formula (45) can be very well approximated in the limit in which δ
� � R (that is, when the new

reference point is very close to the track):

δ
�
= δ −

Cδ 2

2
+ � ∆x sin φ0 − ∆y cos φ0 � (1 − Cδ) − C

∆2
x + ∆2

y

2
(52)

where the neglected term on the right hand side is Cδ
� 2/2. This expression is even more useful when

one realizes that equation (47) leads to computer problems in the C → 0 limit whereas this one does
not. Moreover, if we divide both sides of the previous equation by (1 − Cδ) and we neglect Cδ 2 and
Cδδ

�
terms:

δ
�
= δ + ∆x sin φ0 − ∆y cos φ0 −

C
2(1 − Cδ) � ∆2

x + ∆2
y

� (53)

which is a very useful and simple expression. This approximation is the basis of the track reconstruc-
tion method (see section 3) in L3.

4.3 New (C, φ, δ )(C, φ, δ )(C, φ, δ ) covariance matrix

The new covariance matrix is built as follows (in a linear approximation):

V
�

= J V JT (54)

where J is the jacobian matrix, JT is its transpose, V is the original covariance matrix and V
�
is the

new one. The most economic way to find the relevant derivatives of the transformation is to differen-
tiate expressions (40), (41):
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−
∂δ

�

∂φ0
sin φ

�
0 +

∂φ
�
0

∂φ0
cos φ

�
0 (R − δ

�
) = +(R − δ) cos φ0 (55)

−
∂δ

�

∂φ0
cos φ

�
0 −

∂φ
�
0

∂φ0
sin φ

�
0 (R − δ

�
) = −(R − δ) sin φ0 (56)

−
∂δ

�

∂δ
sin φ

�
0 +

∂φ
�
0

∂δ
cos φ

�
0 (R − δ

�
) = − sin φ0 (57)

−
∂δ

�

∂δ
cos φ

�
0 −

∂φ
�
0

∂δ
sin φ

�
0 (R − δ

�
) = − cos φ0 (58)

−R2 sin φ
�
0 −

∂δ
�

∂ C
sin φ

�
0 +

∂φ
�
0

∂ C
cos φ

�
0 (R − δ

�
) = −R2 sin φ0 (59)

−R2 cos φ
�
0 −

∂δ
�

∂ C
cos φ

�
0 −

∂φ
�
0

∂ C
sin φ

�
0 (R − δ

�
) = −R2 cos φ0 (60)

Now it is easy to isolate all derivatives:

∂C
�

∂C
= 1 (61)

∂C
�

∂φ0
= 0 (62)

∂C
�

∂δ
= 0 (63)

∂φ
�
0

∂C
=

R2 sin(φ
�
o − φ0)

R − δ � (64)

∂φ
�
0

∂φ0
=

(R − δ) cos(φ
�
o − φ0)

R − δ � (65)

∂φ
�
0

∂δ
=

sin(φ
�
o − φ0)

R − δ � (66)

∂δ
�

∂C
= R2 (cos(φ

�
0 − φ0) − 1) (67)

∂δ
�

∂φ0
= −(R − δ) sin(φ

�
o − φ0) (68)

∂δ
�

∂δ
= cos(φ

�
0 − φ0) (69)

which is a very useful compressed form. However, for computational needs is better to work without
high values of R (that is, we want well behaved expressions in the straight line limit). Making use of
∆x, ∆y to replace cos(φ

�
o − φ0) and sin(φ

�
o − φ0):

sin(φ
�
o − φ0) =

−C
1 − Cδ � (∆x cos φ0 + ∆y sin φ0) (70)

cos(φ
�
o − φ0) =

1 − Cδ
1 − Cδ � +

C
1 − Cδ � (−∆x sin φ0 + ∆y cos φ0)

= 1 +
C2

2(1 − Cδ �
)

(δ
� 2 − (∆x + δ sin φ0)2 − (∆y − δ cos φ0)2) (71)

⇓ ⇓
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∂C
�

∂C
= 1 (72)

∂C
�

∂φ0
= 0 (73)

∂C
�

∂δ
= 0 (74)

∂φ
�
0

∂C
= −

1
(1 − Cδ

�
)2 (∆x cos φ0 + ∆y sin φ0) (75)

∂φ
�
0

∂φ0
= � 1 − Cδ

1 − Cδ � � +
C2(1 − Cδ)
2(1 − Cδ � )2 (δ

� 2 − (∆x + δ sin φ0)2 − (∆y − δ cos φ0)2) (76)

∂φ
�
0

∂δ
= −

C2

(1 − Cδ � )2 (∆x cos φ0 + ∆y sin φ0) (77)

∂δ
�

∂C
=

1
2(1 − Cδ � ) (δ

� 2 − (∆x + δ sin φ0)2 − (∆y − δ cos φ0)2) (78)

∂δ
�

∂φ0
=

1 − Cδ
1 − Cδ

� (∆x cos φ0 + ∆y sin φ0) (79)

∂δ
�

∂δ
= 1 +

C2

2(1 − Cδ �
)

(δ
� 2 − (∆x + δ sin φ0)2 − (∆y − δ cos φ0)2) (80)

and in the straight track limit:

∂C
�

∂C
= 1 (81)

∂C
�

∂φ0
= 0 (82)

∂C
�

∂δ
= 0 (83)

∂φ
�
0

∂C
= −(∆x cos φ0 + ∆y sin φ0) (84)

∂φ
�
0

∂φ0
= 1 (85)

∂φ
�
0

∂δ
= 0 (86)

∂δ
�

∂C
=

1
2

(δ
� 2 − (∆x + δ sin φ0)2 − (∆y − δ cos φ0)2) (87)

∂δ
�

∂φ0
= (∆x cos φ0 + ∆y sin φ0) (88)

∂δ
�

∂δ
= 1 (89)

4.4 New SZ covariance matrix

All derivatives are in this case much simpler:
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∂ tan λ
�

∂ tan λ
= 1 (90)

∂ tan λ
�

∂z0
= 0 (91)

∂z
�
0

∂ tan λ
= s (92)

∂z
�
0

∂z0
= 1 (93)

which gives the covariance matrix:

V
�
sz =

��
� Vtan λ tan λ s Vtan λ tan λ + Vtan λ z0

s Vtan λ tan λ + Vtan λ z0 s2 Vtan λ tan λ + 2s Vtan λ z0 + Vz0 z0

���
� (94)

5 Track crossing a cylinder parallel to Z

The crossing point (x
�
0, y

�
0, z

�
0) is defined by the conditions:

x
�
0 + R sin φ

�
0 = x0 + R sin φ0 (95)

y
�
0 − R cos φ

�
0 = y0 − R cos φ0 (96)

z
�
0 = z0 + s tan λ (97)

ρ2 = (x
�
0 − xρ)2 + (y

�
0 − yρ)2 (98)

where (xρ, yρ) is the center of the circumference to be crossed and ρ is its radius. To solve the problem
we will use the following definitions:

φρ = atan2atan2atan2 � sin φ0 − C(xρ − x0), cos φ0 + C(yρ − y0) � (99)

φc = atan2atan2atan2 � y �
0 − yρ, x

�
0 − xρ � (100)

γ =
2(xρ − x0) sin φ0 − 2(yρ − y0) cos φ0 − Cρ2 − C((xρ − x0)2 + (yρ − y0)2)

2ρ
�

(sin φ0 − C(xρ − x0))2 + (cos φ0 + C(yρ − y0))2
(101)

The solution can be derived from:

sin(φc − φρ) = γ (102)

(103)

which has a meaning if  γ < 1 and gives two possible angles φc (as expected). The values for (x
�
0, y

�
0)

are:

x
�
0 = xρ + ρ cos φc (104)

y
�
0 = yρ + ρ sin φc (105)
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Figure 4: Track crossing a circumference in the XY plane.

15



but usually we will be interested in a solution with positive arc length:

(x
�
0 − x0) cos φ0 + (y

�
0 − y0) sin φ0 > 0 (106)

A particular case is that of a cylinder with ρ2 < R2 and (x0 − xρ)2 + (y0 − yρ)2 < ρ2, that is, a cylinder
with its center very close to the distance of minimum approach. In this case there is only one solution
with s > 0:

φc = φρ + arcsin(γ ) (107)

6 Track crossing a plane

The crossing point (x
�
0, y

�
0, z

�
0) is defined by the following conditions:

x
�
0 = x0 + s sincsincsinc � Cs

2 � cos � φ0 −
Cs
2 � (108)

y
�
0 = y0 + s sincsincsinc � Cs

2 � sin � φ0 −
Cs
2 � (109)

z
�
0 = z0 + s tan λ (110)

0 = (xp − x
�
0) vx + (yp − y

�
0) vy + (zp − z

�
0) vz (111)

where (xp, yp, zp) is a given point on the plane and (vx, vy, vz) is an unitaryunitaryunitary vector perpendicular to it.
To solve the problem we will define:

φv = atan2atan2atan2 � vy, vx � (112)

vt =
�

v2
x + v2

y (113)

dp = (xp − x0) vx + (yp − y0) vy + (zp − z0) vz (114)

where dp is in fact the signed distance from (x0, y0, z0) to the plane. Then we can get an equation in the
variable s:

s =
dp

vt sincsincsinc � Cs
2

� cos � Cs
2 + φv − φ0

� + vz tan λ
(115)

The equation can be solved iteratively assuming the parameter Cs to be small:

s0 =
dp

vt cos(φv − φ0) + vz tan λ
(116)

s1 =
dp

vt sincsincsinc � Cs0
2

� cos � Cs0
2 + φv − φ0

� + vz tan λ
(117)

...

si =
dp

vt sincsincsinc � Csi−1
2

� cos � Csi−1
2 + φv − φ0

� + vz tan λ
(118)
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where one should check that  Cs < π at every step. In the special case in which vz = 0 the equation
can be exactly solved in the variable Cs:

sin(Cs + φv − φ0) = sin(φv − φ0) + C dp (119)

which gives two possible solutions (but we choose the one with minimum arc length). The final answer
for s comes from substitution of Cs in expression (115) 6).

7 Including new points in a track

Let us assume that the track goes through the point (xƒix, yƒix, zƒix) with some uncertainty. Let us
also assume that all we know from the track are its parameters and the covariance matrix. Even if so,
it is is possible to include that point in the fit assuming a linearized behaviour around the minimum.
This hypothesis is almost true if the variation of the track parameters in the whole game is very small.
If this is not true, even the transport of the covariance matrix has no meaning.

7.1 XY plane

The χ2 in absence of new points is:

χ2 = xi Sij xj (120)

x1 = C − C0 (121)

x2 = φ0 − φ0
0 (122)

x3 = δ − δ 0 (123)

where a sum on repeated indices is assumed. Sij is the inverse of the covariance matrix, Vij, and C0,
φ0

0 and δ 0 are the actual values of the track parameters (the obvious minimum of the χ 2 is at C = C0,
φ0 = φ0

0 , δ = δ 0).
Let us define a second set of parameters. For that, we will use (xƒix, yƒix, zƒix) as reference point, the

one which is going to be included in the fit. From section 4 we know how to extract the new azimuthal
angle and the new distance of closest approach from the initial set of parameters:

∆x = xƒix − xr (124)

∆y = yƒix − yr (125)

↓

φ
�
0 = atan2atan2atan2 � sin φ0 −

∆x

R − δ
, cos φ0 +

∆y

R − δ � (126)

δ
�

= δ −
Cδ 2

2
+ � ∆x sin φ0 − ∆y cos φ0 � (1 − Cδ) − C

∆2
x + ∆2

y

2
(127)

where we have neglected the term C δ
� 2/2, given the nature of the problem. We can also establish the

χ2 in this second reference system:

6)To gain acccuracy do not divide Cs by C.
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χ2 = x
�
i S

�
ij x

�
j (128)

x
�
1 = C

�
− C0 �

≡ C − C0 (129)

x
�
2 = φ

�
0 − φ0 �

0 (130)

x
�
3 = δ

�
− δ 0 �

(131)

where S
�
ij is the inverse of V

�
ij, the covariance matrix after transport. In the linear approximation used:

x
�
i =

∂x
�
i

∂xj

�
�
�
�
�
x=0

xj (132)

V
�
ij =

∂x
�
i

∂xk

�
�
�
�
�
x=0

∂x
�
j

∂xl

�
�
�
�
�
x=0

Vkl (133)

where the derivatives can be found from equations (72) to (80) in section 4 by replacing:

∂C
�

→ ∂x
�
1 (134)

∂φ
�
0 → ∂x

�
2 (135)

∂δ
�

→ ∂x
�
3 (136)

∂C → ∂x1 (137)

∂φ0 → ∂x2 (138)

∂δ → ∂x3 (139)

The new point should belong to the track. That means that δ
�
is zero within its uncertainty, σ. In

the second reference system, the χ2 changes as follows:

χ2 = x
�
i S

�
ij x

�
j + � δ

�

σ � 2

(140)

= x
�
i S

�
ij x

�
j + � δ 0 �

+ x
�
3

σ � 2

(141)

which leads to the solution:

V
� new
kj = � S

�
kj +

1
σ2 gk3gj3 � −1

(142)

⇓

x
�
k = − V

� new
k3

δ 0 �

σ2 (143)

where gij is the identity matrix (1 if i = j, 0 otherwise).
In the general case there will be several points in the fit. We can not make things so easy because

the χ2 must be established in only one system. Then, it is better to establish it in the original frame:
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χ2 = xi Sij xj +
N�

k=1
� δ

�
k

σk � 2

(144)

= xi Sij xj +
N�

k=1

��
� δ 0 �

k + ∂x �3k
∂xj

x=0 xj

σk

� �
�

2

(145)

for N points (φ
�
0k, δ

�
k), k = 1, N. Finding the minimum of this χ2 leads to:

Vnew
ij = � Sij +

N�
k=1

1
σ2

k

∂x
�
3k

∂xi

�
�
�
�
�
x=0

∂x
�
3k

∂xj

�
�
�
�
�
x=0 � −1

(146)

⇓

xi = − Vnew
ij

N�
k=1

δ 0 �
k

σ2
k

∂x
�
3k

∂xj

�
�
�
�
�
x=0

(147)

7.2 SZ plane

The problem is similar to the XY case, but slightly simpler. We will do everything in the initial
reference system:

χ2 = xi Tij xj + � x2 + sx1 + z0
0 + s tan λ 0 − zƒix

σ � 2

(148)

x1 = tan λ − tan λ 0 (149)

x2 = z0 − z0
0 (150)

where s is the arc length described in the XY plane and Tij is the inverse of Wij, the covariance matrix
in the SZ plane. The solution is:

Wnew
ij = � T11 + s2

σ2 T12 + s
σ2

T21 + s
σ2 T22 + 1

σ2 � −1

(151)

⇓

x1 = −(Wnew
11 s + Wnew

12 )
z0

0 + s tan λ 0 − zƒix

σ2 (152)

x2 = −(Wnew
21 s + Wnew

22 )
z0

0 + s tan λ 0 − zƒix

σ2 (153)

Finally, the most general solution for several points is:

Wnew
ij =

�� T11 +
� N

k=1
s2

k
σ2

k
T12 +

� N
k=1

sk
σ2

k

T21 +
� N

k=1
sk
σ2

k
T22 +

� N
k=1

1
σ2

k

�� −1

(154)

⇓
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x1 = −
N�

k=1
(Wnew

11 sk + Wnew
12 )

z0
0k + sk tan λ 0 − zkƒix

σ2
k

(155)

x2 = −
N�

k=1
(Wnew

21 sk + Wnew
22 )

z0
0k + sk tan λ 0 − zkƒix

σ2
k

(156)

8 Constraining a track to a point

8.1 XY plane

A very particular case of the previous one happens when σ → 0, that is, when we want to fix the
point to be on the track. That implies that δ

�
is zero. The χ2 should be written in a different way:

χ2 = xi Sij xj + ξ δ
�

(157)

where ξ is a Lagrange multiplier needed to impose the δ
�
= 0 constraint. The solution is:

xi = −
δ

�
0 Vij

∂x �3
∂xj

�
�
�
x=0

∂x �3
∂xk

�
�
�
x=0

∂x �3
∂xl

�
�
�
x=0

Vkl

(158)

Another option is to go to the system in which the fixed point is the reference point. There, the χ 2

is again conceptually simpler:

χ2 = x
�
i S

�
ij x

�
j + ξ δ

�
(159)

(160)

with the solution:

C = C0 −
V

�
13

V
�
33

δ 0 �
(161)

φ
�
0 = φ0 �

0 −
V

�
23

V
�
33

δ 0 �
(162)

δ
�

= 0 (163)

The same result would have been obtained if we simply solve equation (143) with δ
�
= 0 and σ = 0.

However, the covariance matrix in that limit is:

V
� new
ij =

����
�

S �22
S �11S22 � −S �12S �12

−S �12
S �11S �22−S �12S �12

0
−S �12

S �11S �22−S �12S �12

S �11
S �11S22 � −S �12S �12

0
0 0 0

� ���
� (164)

which must be used carefully (it is a singular matrix).
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8.2 SZ plane

The solution is:

tan λ = tan λ 0 −
sW11 + W12

s2W11 + 2sW12 + W22
(z0

0 + s tan λ 0 − zƒix) (165)

z0 = zƒix − s tan λ (166)

And the new covariance matrix (also singular) in the limit σ → 0 is:

Wnew
ij =

1
T11 − 2sT12 + s2T22

� 1 −s
−s s2 � (167)

9 Common vertex for several tracks in XY

To find the common point of several tracks (at least 2) in the XY plane we would like to minimize
for all tracks approximation (52):

δ
�
i = δi −

Ciδ 2
i

2
+ � ∆x sin φ0i − ∆y cos φ0i � (1 − Ciδi) − Ci

∆2
x + ∆2

y

2
(168)

where δ
�
i is the distance of closest approach of the ith track to the desired reference point (x

�
r, y

�
r). The

idea is that ∆x and ∆y are the parameters to be determined, which are the difference between the old
reference point and the new one. The neglected term on the right hand side is C i δ

� 2
i /2 which is expected

to be very small. The χ2 is:

χ2
xy =

N�
i=1

� δ
�
i

σi � 2

(169)

where σi is the error on δ
�
i . The best way is to linearize the problem, by choosing the first reference

point (xr, yr) close to the final one. If that is the case, Ci (∆2
x + ∆2

y) terms may be neglected. In the first
step we minimize the following χ2:

αi =
2 δi − Ciδ 2

i

2 σi
(170)

βi =
sin φ0i (1 − Ciδi)

σi
(171)

γi = −
cos φ0i (1 − Ciδi)

σi
(172)

↓

χ2
xy =

N�
i=1

� αi + βi ∆x + γi ∆y � 2 (173)

with the solution:
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V∆x∆y = � �
β2

i
�

βiγi�
βiγi

�
γ 2

i � −1

(174)

� ∆x

∆y � = V∆x∆y � −
� αiβi

−
� αiγi � (175)

The error on each δ
�
i induced by linearization is Ci

∆2
x +∆2

y

2 . If we have not enough accuracy the process
should be iterated redefining αi until we get the required precision:

αi =
2δi − Ciδ 2

i

2σi
− Ci

∆2
0x + ∆2

oy

2σi
(176)

where ∆0x and ∆0y come from the previous iteration.

10 Common vertex for several tracks in space

The χ2 contribution in the SZ plane is the following:

χ2
z =

N�
i=1

�� ∆Z − z0i − tan λi

sincsincsinc(Cisi)
(∆x cos φ0i + ∆y sin φ0i)

σzi

�� 2

(177)

where si is the arc length from a displacement given by (∆x, ∆y) and σzi is the error on ∆Z from the ith
track. Now ∆Z is not the difference with respect to the z reference point, but with respect to z = 0. In
the formula above Cδ

�
terms have been neglected. We have to minimize the global χ 2:

χ2 = χ2
xy + χ2

sz (178)

Then the problem can be still linearized in an iterative process:

αi =
2δi − Ciδ 2

i

2σi
− Ci

∆2
0x + ∆2

oy

2σi
(179)

βi =
sin φ0i (1 − Ciδi)

σi
(180)

γi = −
cos φ0i (1 − Ciδi)

σi
(181)

ξi =
cos φ0i tan λi

sincsincsinc(Cis0i) σzi
(182)

ηi =
sin φ0i tan λi

sincsincsinc(Cis0i) σzi
(183)

↓
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V∆x∆y∆z =

��������
�

�
(β2

i + ξ2
i )

�
(βiγi + ξiηi) −

� ξi
σzi

�
(βiγi + ξiηi)

�
(γ 2

i + η2
i ) −

� ηi
σzi

−
� ξi

σzi
−

� ηi
σzi

� 1
σ2

zi

���������
�

−1

(184)

��
� ∆x

∆y

∆z

� �
� = V∆x∆y∆z

��������
�

−
�

(αiβi + z0i
ξi

σzi
)

−
�

(αiγi + z0i
ηi
σzi

)

� z0i
σ2

zi

� �������
� (185)

where ∆0x, ∆0y and s0i are the results of the previous iteration and they are set to zero in the fist step.
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